Brief introduction

Zhuzhou Cemented Carbide Cutting Tools Co.,Ltd. (**ZCC-CT**) is a subsidiary company of the China Tungsten High-tech Materials, located in Hunan province, China.

With 60 years experience in the manufacture of cemented carbide products, a team of enthusiastic design engineers, and the world's most advanced technology and equipment,

ZCC has created the perfect combination required to lead China in the production and distribution of highly productive, superior quality carbide cutting tools long into the future.

History of **ZCC-CT**

- 1954 Zhuzhou Cemented Carbide Works founded cemented carbide production in China.
- 1988 Introduced advanced technology and equipment to produce high precision indexable cemented carbide inserts for metal cutting.
- 1992 Solid carbide cutting tools and end mill production line were started with the introduction of international technology and equipment.
- 2002 Zhuzhou Cemented Carbide Cutting Tools Co Ltd.was founded. Cemented carbide indexable insert production line, and solid carbide cutting tool production line were transformed by the introduction of advanced technology and processing equipment sourced from respected international suppliers. The research and development section was enhanced through the introduction of an ever-growing team of highly skilled engineers working full time to improve and expand the range of solid carbide cutting tools, indexable inserts, and toolholding systems.
- 2006 Established wholly-owned subsidiaries in Europe and the United States to expand overseas markets.
- 2011 Becoming a member of the China Minmetals Group; The foundation of industrial park of Zhuzhou cemented precision tools.
- 2015 China cemented carbide laboratory passed acceptance.
- 2018 Acquisition of German HPtec company.

Research and Development

A highly trained R & D staff work hard continuously in the field of cutting tool substrate material development, coating material technology, and insert chipbreaker design.

They also conduct testing and evaluations of newly designed tools prior to market introduction.

ZCC-CT 's research & development center is the most advanced and modern scientific research base in China for promoting the development of cemented carbide cutting tools.

contents

GENERAL TURNING TOOLS
P1-117

PARTING, GROOVING TOOLS
P118-145

THREADING TOOLS
P146-185

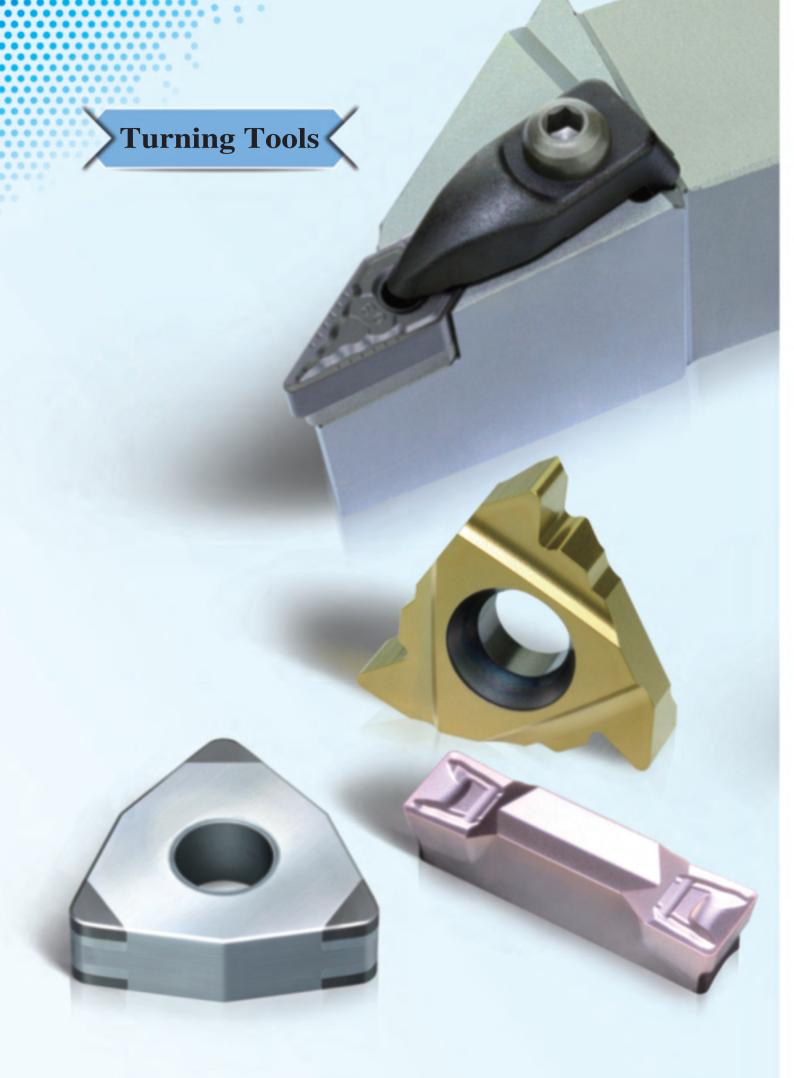
MILLING TOOLS
P186-306

SOLID CARBIDE CUTTING TOOLS
P307-355

BORING TOOLSP356-433

- This catalog shows basic types of standard series inserts and cutting tools. If you have any questions or feedback, please feel free to contact our Sales Department. We will try our best to satisfy you.
- All information in this catalog relates to current products. We will improve our products as our technology develops.
- All technical data in this catalog is prescribed for given working conditions. Please use it as a reference for your own working conditions.

A


В

C

D

E

Ē

GENERAL TURNING TOOLS

Overview of turning inserts/tools

Table of recommended grades for turning

Introduction of chip-breakers in turning operations

Main grades and applications

Turning insert code key

Negative turning inserts

Positive turning inserts

PCBN&PCD inserts

Turning Toolholders Code Key

Turning Toolholders

Boring Bars Code Key

Boring Bars

P2-7

P8

P9-13

P14-27

P28-29

P30-57

P58-72

P73-93

P94-95

P96-106

P108

P109-117

► Product overview

Turning

Turning inserts

				mining in				
f	For inishing							
		DNEG-NGF	VNEG-NGF	CNMG-DF	CNMG-SF	CNMG-EF	CNEG-NF	DNMG-DF
Page		P36	P52	P30	P30	P30	P30	P35
			ZDY					
	DNMG-SF	DNMG-EF	DNEG-NF	SNMG-DF	SNMG-EF	SNMG-SF	TNMG-DF	TNMG-SF
Page	P35	P36	P36	P41	P41	P41	P47	P47
	TNMG-EF	VNMG-DF	VNMG-EF	VNEG-NF	VNMG-SF	WNMG-DF	WNMG-SF	WNMG-EF
Page	P47	P52	P52	P52	P52	P54	P54	P55
			Wiper	O			6	
	WNEG-NF			CNMG-WGF	DNMX-WGF	TNMX-WGF	WNMG-WGF	CNMG-WGM
Page	P55			P30	P35	P47	P54	P32
	DNMX-WGM	TNMX-WGM	WNMG-WGM					
Page	DNMX-WGM P37	TNMX-WGM P48	WNMG-WGM P55					
Page		P48	P55					
Page	or semi- inishing	P48 CNMG-PM	P55 CNMG-DM	CNMG-EM	CNMG-NM	DNMG-PM	DNMG-DM	DNMG-EM
Page	or semi- inishing	P48	P55	CNMG-EM	CNMG-NM P32	DNMG-PM P37	DNMG-DM P38	DNMG-EM
Page	or semi- inishing	CNMG-PM P31	CNMG-DM P31	P32	P32	P37	P38	P38
Page	or semi- inishing	CNMG-PM P31 SNMG-PM	CNMG-DM P31 SNMG-DM	P32 SNMG-EM	P32 SNMG-NM	P37 TNMG-PM	P38 TNMG-DM	P38 TNMG-EM
Page	or semi- inishing	CNMG-PM P31	CNMG-DM P31	P32	P32	P37	P38	P38
Page	or semi- inishing	CNMG-PM P31 SNMG-PM	CNMG-DM P31 SNMG-DM P42	P32 SNMG-EM	P32 SNMG-NM	P37 TNMG-PM	P38 TNMG-DM	P38 TNMG-EM
Page	or semi- inishing	CNMG-PM P31 SNMG-PM	CNMG-DM P31 SNMG-DM	P32 SNMG-EM	P32 SNMG-NM	P37 TNMG-PM	P38 TNMG-DM	P38 TNMG-EM

Overview of turning inserts

	For roughing							
		CNMG-SNR	DNMG-SNR	SNMG-SNR	TNMG-SNR	VNMG-SNR	WNMG-SNR	
	Page	P33	P40	P44	P50	P53	P57	
	CNMG-DR	CNMM-DR	CNMG-ER	CNMM-ER	DNMG-DR	DNMM-DR	DNMG-ER	DNMM-ER
	Page P32	P33	P33	P33	P39	P39	P39	P40
Negative inserts								
ativ	SNMG-DR	SNMM-DR	SNMG-ER	SNMM-ER	TNMG-DR	TNMM-DR	TNMG-ER	WNMG-DR
leg	Page P43	P43	P44	P44	P49	P49	P49	P57
Z	Conventiona chipbreaker							
		CNMG	DNMG	SNMG	SNMM	TNMG	TNMM	VNMG
	Page	P34	P40	P45	P45	P50	P51	P53
	Without chipbreaker (flat top)	CNMA	DNMA	SNMA	SNGN/SNUN	TNMA	WNMA	
	Page	P34	P40	P45	P46	P51	P57	
	For fine finishing							۵
		CCGT-SF	DCGT-SF	VCGT-SF	CPGT-SF	DPGT-SF	TPGT-SF	TPGH-L
	Page	P58	P60	P67	P70	P71	P72	P72
Positive inserts	For							
siti		VCGT-NGF	VBET-NGF	CCMT-HF	CCMT-EF	DCMT-HF	DCMT-EF	SCMT-HF
Ро	Page	P67	P69	P58	P58	P60	P60	P62
						•		
	SCMT-EF	TCMT-HF	TCMT-EF	VCGT-HF	VBMT-HF	VBMT-EF		
	Page P62	P64	P64	P67	P69	P69		

	For semi finishing				10/			
		CCMT-HM	CCMT-EM	DCMT-HM	DCMT-EM	SCMT-HM	SCMT-EM	TCMT-HM
	Page	P58	P59	P60	P60	P62	P62	P65
	A							
	TCMT-EM	VBMT-HM	VBMT-EM					
	Page P64	P69	P69					
ts	For roughing	•						
ë		VBMT-SNR	CCMT-HR	DCMT-HR	SCMT-HR	TCMT-HR	VBMT-HR	
ins	Page	P69	P59	P61	P62	P65	P69	
Positive inserts	For Al- machinin	g			N			
		CCGX-LC	CCGX-LH	DCGX-LC	DCGX-LH	SCGX-LC	SCGX-LH	TCGX-LC
	Page	P59	P59	P61	P61	P63	P63	P65
	TCGX-LH	VCGX-LC	VCGX-LH					
	Page P66	P68	P68					
	Convention chipbreak	nal er						
		SCMT	ТСМТ					
	Page	P63	P66					

PCBN&PCD inserts

		LODIN		.SCI US					
		0	0/	•	0				
erts		CNGA	DNGA	TNGA	VNGA	WNGA			
us(Page	P78	P80	P83	P84	P85			
<u>ө</u>									
Negative inserts		BN inserts ning case							
			CNGN	DNGN	SNGN	RNGN			
	Page		P79	P81	P82	P86			
nserts		CCGW	CCMX	DCGW	DCMX	TCGW	TCMX	VBGW	VBMX
nse	Page	P87	P88	P89	P89	P90	P91	P92	P92

1				
	VCGW	VCMX		
Page	P93	P93		

Parting and grooving inserts

Positive i

Litti	series			-3			
		ZP□D-MG	ZP□S-MG	ZT□D-MG	ZT□S-MG	ZT□D-MM	ZT□D-EG
Page		P127	P127	P128	P128	P128	P129
					0		
	ZT□D-EG	ZIMF-SM	ZR□D-MG	ZR□D-NM	ZR□D-EG	ZIGQ-NM	ZIGQ-NF
Page	P129	P129	P130	P130	P131	P131	P132

Overview of turning inserts

Threading inserts

Right hand type

ISO metric thread

External thread

P156

General pitch thread

American ACME

External thread Internal thread

Page

Internal thread P157

External thread Internal thread

External thread P159

Internal thread

Right hand type

Unified thread

P162

External thread

P160

Internal thread

External thread P161

Internal thread

External thread

Internal thread P162

American standard aerospace and aviation threads

External thread

P163

P164

American STUB-ACME (Short tooth threads)

NPT American standard taper pipe threads

Internal thread

P165

Right hand type

Page

External thread

Internal thread

P166

External thread

Internal thread

External thread

External thread

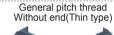
P165

Internal thread

P168

Right hand type

Thin type


ISO metric thread Full Form(Thin type)

External thread

Internal thread

External thread Internal thread

External thread

Internal thread

Right hand type

Page

Unified thread(Thin type)

External thread

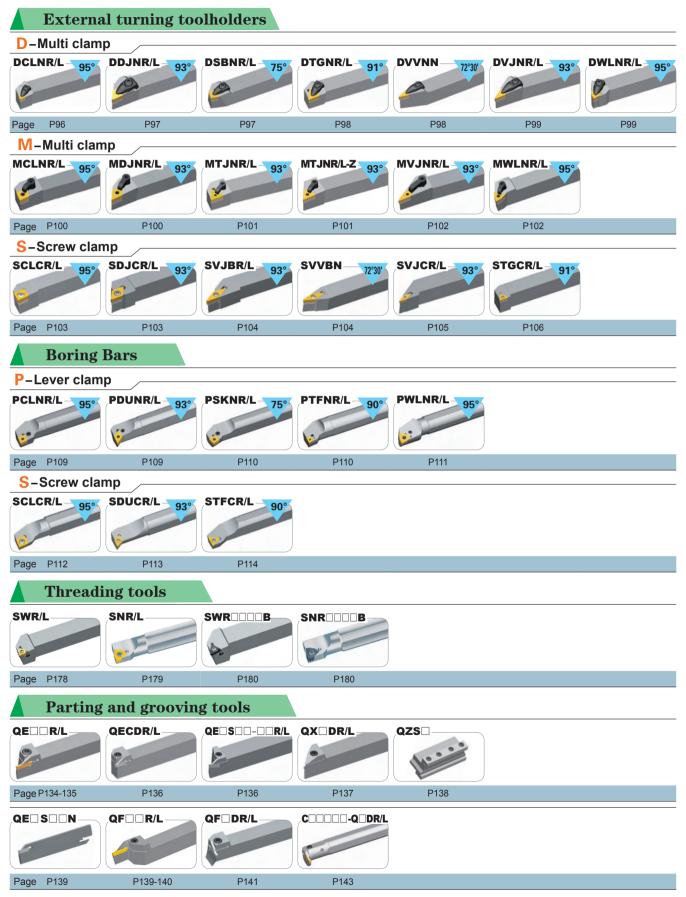
P173

American standard taper pipe threads (Thin type)

Page

Internal thread

External thread P174


Internal thread P174

External thread P175

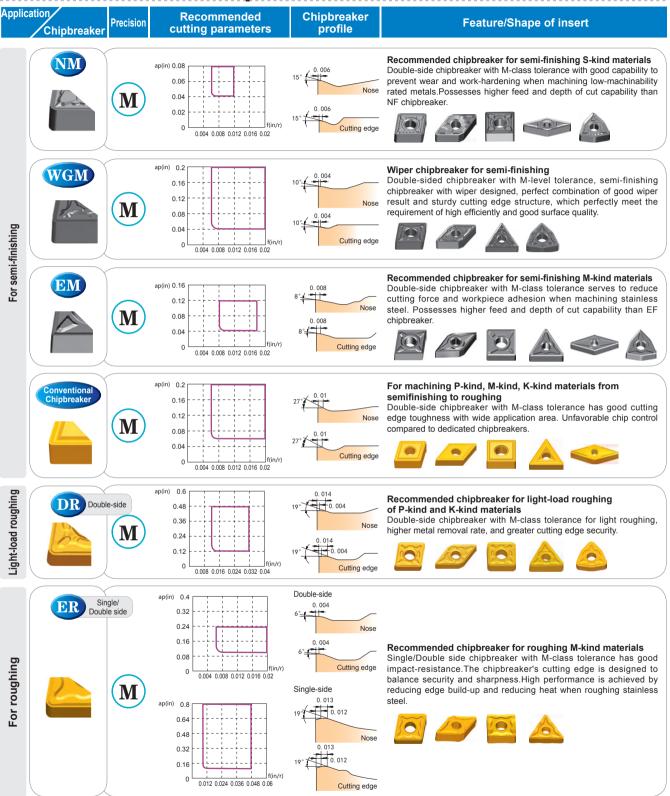
Internal thread P175

Turning toolholders

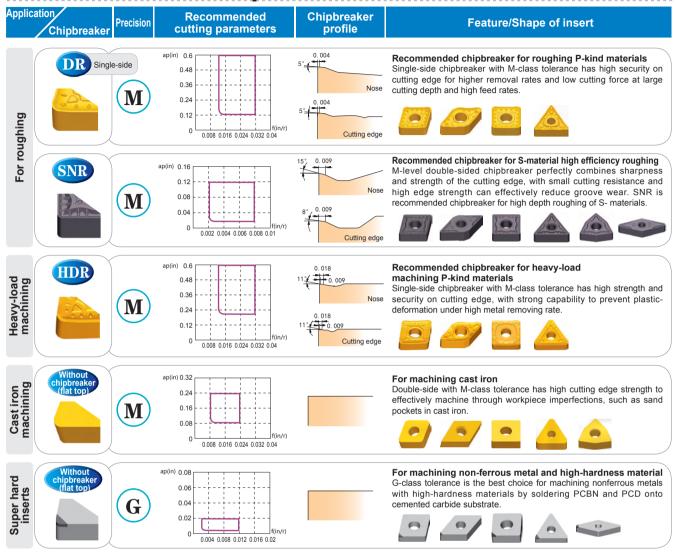
Turning

Table of recommended grades for turning inserts //

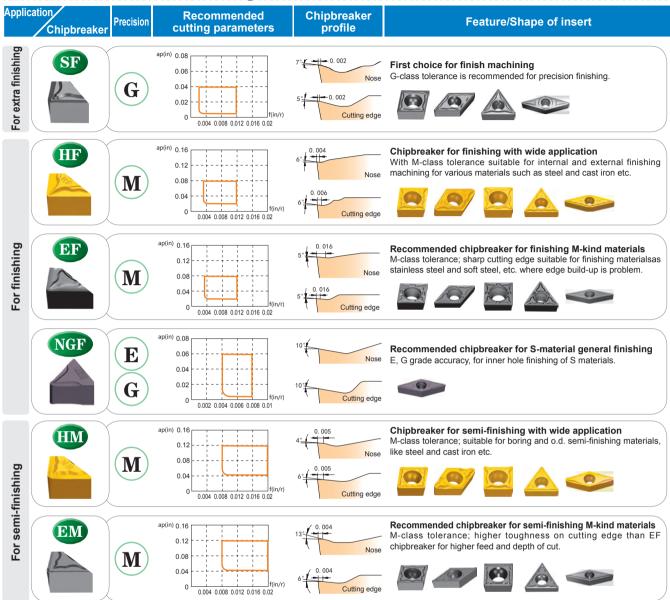
IS	ISO General turn								Thread- ing		Parting and grooving	
Co	do	Coated g	rade	Cormot	Coated	Cemented	PCBN	PCD	Coating		Coating	Cemented
Co	de	CVD	PVD	Cermet	cermet	carbide	PCBN	PCD	PVD	CVD	PVD	carbide
P	01											
<u> </u>	10	YBC151 YBC152 YBC152	YBG102 202 205	YNG151	YNG151C							
Steel	20		YBG202	۶	Ā				YBG201	YBC251	YBG205	
	30	YBC YBC351	>							_>	Ϋ́	
	40											
M	01											
	10	-	22 115 105	3151	YNG151C							
Stainless steel	20	YBM251 YBM253 YBM253	YBG202 YBM215 YBG205	YNG151	- ANG				YBG201 YBG202		YBG302	
Stain	30	YBM253							男		XB(
	40											
K	01											
	10	780052 D102		51	21C		YCB011					
Cast iron	20	<u> </u>		YNG151	YNG151C	YD201	X X B		YBG201 YBG202		302	201
		YE VBD 252				□			YBC		YBG302	YD201
	30											
N	01											
non-ferrite materials	10					YD101		YCD011	207			YD201
non						¥			YBG201 YBG202			
	30											
S	01		02			<u> </u>					22	
sistant	10		YBS103 YBG102 YBG202			YD101			02		YBS103 YBG102 YBG105 YBG302	YD201
Heat-resistant steel	20		YBG212 YBG202						YBG201 YBG202		YBS103 YBG10 YBG302 YBG212	>
Ť	30		YBG								YBC	
Н	01						712					
ned	10						YCB012					
Hardened material	20											
	30											


Negative inserts with a hole

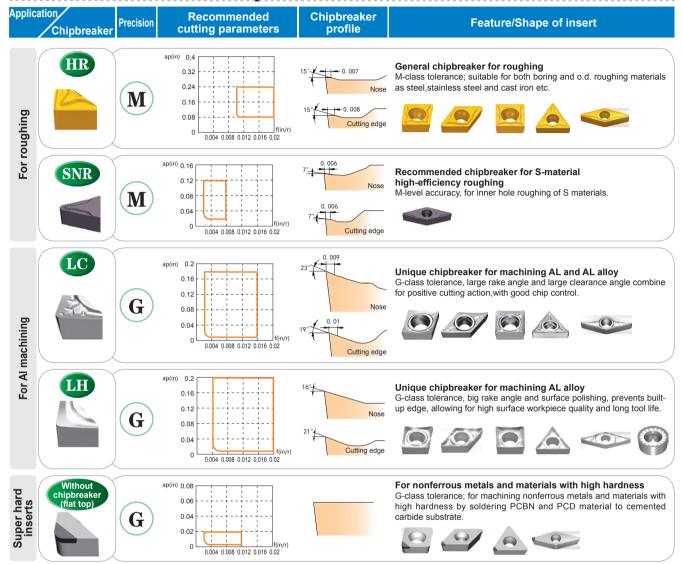
Turning)


Introduction of chip-breakers

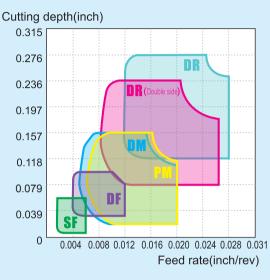
Negative inserts with a hole

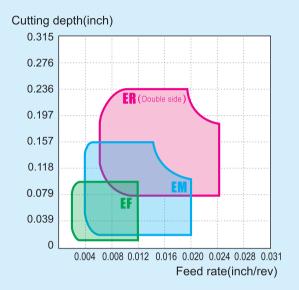


Negative inserts with a hole



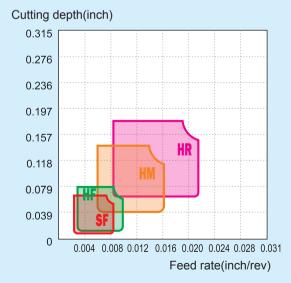
Positive inserts with a hole

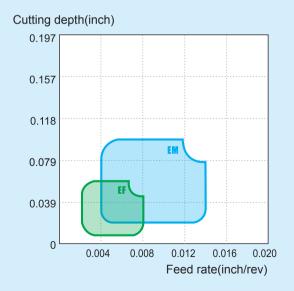

Positive inserts with a hole



Main chip breaking range reference for general turning inserts

Negative inserts




► Workpiece material: 45[#] steel

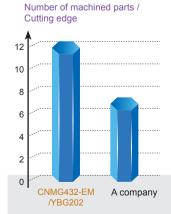
▶ Workpiece material: stainless steel (Austenitic 321)

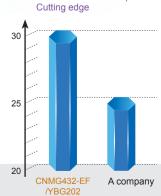
Positive inserts

► Workpiece material: 45[#] steel

► Workpiece material: stainless steel (Austenitic 321)

Rake angle and inclined angle are specially designed for intensively adhesive stainless steel and high-plasticity materials which are hard to be machined. Sharp cutting edge enables it to cut lightly and easily and achieve good surface quality by well controlling chip breaking. It is especially suitable for finishing these kinds of materials.


Inserts meet the requirements of machining intensively adhesive materials. Impact resistance of cutting edge is improved in addition to sharpness, which makes it suitable for semi-finishing and intermittent machining of adhesive materials such as austenitic stainless steel, etc.


Specially designed double rake angle with wide land achieves balance between edge security and sharpness, and effectively reduces cutting resistance and wear on groove.

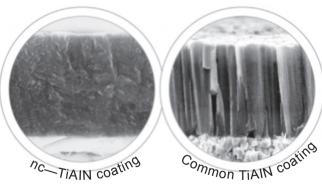
Machining external of valve

Machining end surface of valve (intermittent machining) Workpiece diameter:5.3in Rotating speed:350 rpm Feed rate:0.01in/r Cutting depth:0.059in

Number of machined parts /

Machining external of valve Workpiece diameter:3.5in Rotating speed:635rpm Feed rate:0.006in/r

Cutting depth:0.039in


At the Cutting Edge of Grade and Coating Technology

For parting, grooving and the machining of difficult to machine materials.

Nano structure nc-TiAIN coating grade

- Smooth coating surface results in less friction and easier chip flow.
- Special Nano structure coating ensures higher toughness, hardness, and bonding to substrate.
- Thermal and chemical stability of coatingallow cutting edges to remain reliable throughout cut.

YBG102

The combination of nc-TiAlN coating and fine grain substrate makes it suitable for turning of various materials and finishing and semi-finishing of high-temperature alloys.

YBG202

Nc-TiAlN coating and ultra-fine grain substrate makes it suitable for finishing and semi-finishing of various materials and turning of super alloy.

YBG105

Finishing and semi-finishing for materials difficult to cut PVD coated grade

PVD coated grade, new TiAIN based multilayer coating, has higher wear resistance and Anti-thermal-oxidation ability. It is suitable for finishing and semi-finishing turning of various materials difficult to cut, such as high temperature alloy, heat resistant alloy, etc.

YBG205

PVD coating grade for finishing of stainless steel

Suitable for relatively small workpieces which require high surface smoothness.

Superfine TiAIN nano coating added with wear-resistant and heat-resistant rare elements has high hardness and excellent heat-resistance, providing effective protection for the cutting edge. Special coating technology ensures stronger combination of coating and substrate. It is suitable for extra finishing of stainless steel

YBG212

Nc-TiAIN coating combined with super tough substrate which made of super fine grain.It's suitable for finishing and roughing materials which are hard to be machined.

YBS103

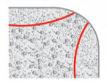
Turning grade for Ni-based S material

Fine wear resistance, and good capability against built-up edge and heat resistance. Suitable for turning of Ni-based materials.

► YBM215

PVD coating of multiple layer nanometer

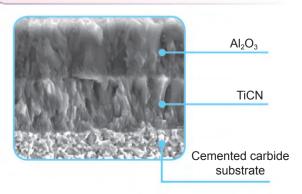
Improved capability of grade's wear resistance and antihigh temperature increases the strength between grade and substrate and the tool stability. This grade is very suitable for turning for stainless steel.


Second generation of YBC

BLACK DIAMOND INSERTS

Achieving both higher cutting speed and longer tool life

Perfect unification of toughness and anti-plastic deformation.


Specially designed cutting edge with "skeleton" realizes perfect unification of toughness and anti-plastic deformation.

Roughness of insert surface is improved after special treatment on surface, which effectively reduces cutting forces, prevents workpiece adhering to surface of inserts and improves operation stability of inserts.

The perfect combination of fibrous TiCN and fine grain Al₂O₃ obviously improves abrasion resistance and antibreakage of inserts.

Thick TiCN and thick Al₂O₃ coatings improve the impact toughness and abrasion resistance, which makes it suitable for finishing and semi-finishing of steel at high speed. Cutting speed can increase by more than 25%, while the tool life can increase by more than 30% at the same cutting speed.

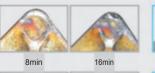
YBC252

Comprising of thick TiCN and thick Al₂O₃ coatings, the grade has high capability against plastic deformation and good hardness of cutting edge. It is preferred grade for machining of steel from finishing to roughing. Under the same cutting conditions, the cutting speed can be increased by more than 25%, while the tool life can be 30% longer under the same cutting speed.

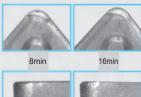
YBC352

Thickness TiCN and Al₂O₃ coating, with strongest toughness and plastic deformation resistance, the ideal grade for high efficient steel rough machining under the bad condition.

Test comparison of inserts abrasion


Workpiece material: 45#steel

Inserts: CNMG432-DM


Cutting parameters: Vc=1300SFPM

 $a_p = 0.04 (inch)$ fn=0.008(inch/r)

Grade from other company

YBC152

BLACK DIAMOND INSERTS TBD

First choice for high-efficiency and highspeed machining of cast iron

- The combination of thick coating and substrate with good hardness and impact resistance gives the inserts excellent impact resistance and stability under high temperature, and improves wear resistance of inserts. Inserts also satisfy the requirements of high speed and high feed rate when machining cast iron.
- The appearance of shining full black is easily identified.

Significant results

- Working efficiency has been improved. Both the coating and the substrate are suitable for machining cast iron at high speed and high feed rate. Cutting speed can be increased by 30% to 40%.
- Cost is reduced as tool life is increased by 40%-50%.
- High machining stability.

YBD052

CVD coated grade, which is characterized by super fine grain and smooth surface, is the combination of hard substrate and coating (extra thick Al_2O_3 + thick TiCN). The grade is optimized for best wear resistance when machining gray cast iron at high speed under dry condition.

YBD102

CVD coated grade, which is the combination of hard substrate and coating (thick Al_2O_3 + thick TiCN), shows excellent wear resistance and impact resistance when machining nodular cast iron at high speed.

YBD152

CVD coated grade, which is the combination of hard substrate and coating (medium thick Al_2O_3 + thick TiCN), has good flaking resistance. It is suitable for turning of cast iron at high speed, and light intermittent cutting can be supported even at moderate speed. It is also suitable for milling of cast iron.

YBD252

CVD coated grade, which is the combination of hard substrate and coating (medium thick Al_2O_3 + thick TiCN), achieves the balance between wear resistance and toughness. It is suitable for wet milling of cast iron, which requires toughness (such as nodular cast iron) at moderate or low speed. It is also suitable for intermittent turning.

YBC151

Substrate with special structure, in combination with Ti(CN), thick layer Al₂O₃, and TiN coating. High resistance to diffusion of rake face and resistance to plastic deformation it is good for finishing and semi-finishing (turning as well as boring) of stainless steel.

YBC251

Coated carbide grade with special strength and toughness, in an optimal combination with MT-Ti(CN), thick layer Al_2O_3 , and TiN coating. Suitable grade for wide application. It is recommended for the finishing, semi-finishing and light roughing of steel, cast steel and stainless steel.

YBC351

Substrate with high strength and resistance against plastic deformation,in combination with MT-Ti(CN), thick layer Al₂O₃,TiN coating.It is suitable for light roughing and roughing steel,cast steel and stainless steel.

YBM151

Substrate with special matrix, in combination with Ti(CN), thick layer Al₂O₃, and TiN coating. With the resistance to rake face diffusion and plastic deformation, it is good for finishing and semi-finishing (turning as well as boring) of stainless steel.

Substrate with good toughness and strength, in combination with Ti(CN), thin layer Al_2O_3 , TiN coating, It is a premium grade for semi-finishing to light roughing (turning and boring) of stainless steel at continuous and intermittent machining conditions.

YBM253

Ideal grade for turning of stainless steel with high cutting depth and high feed rate under bad working condition.

- Ultra-fine grain coating technology provides better wear resistance and toughness;
- Improved remain internal stress design ensures good toughness and anti-cracking performance;
- Polishing treatment on coating surface makes it suitable for cutting adhesive materials.

Main grades and applications

YNG151

TiCN based cermets, of which the grains are refined with a special process with more even grain size. The combination of cemented carbide hard phase and the binder phase is even more strengthened, further improving the wear resistance and lifetime of the inserts. They are suitable for the finishing and super finishing of steel, stainless steel and cast iron.

YNG151C

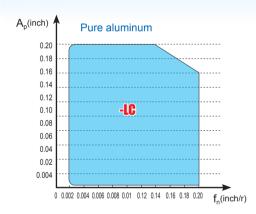
TiCN based cermets+Nano PVD coating, of which the surface is specially pre-treated with an even and smooth surface. The friction coefficient of the workpiece in relation to the insert is reduced, causing good chip flow, increased wear resistance, and prolonged lifetime of insert. They are suitable for the finishing and fine finishing of steel materials, stainless steel and cast iron.

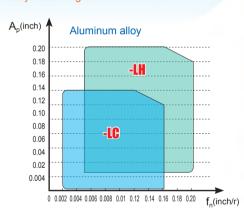
-LC New-generation chipbreaker for AI machining

New-generation chipbreaker for aluminum

- -LC inserts are designed with a special chipbreaker. Large rake angle and clearance angle allow for sharper cutting edge, ensuring smoother cutting, while controlling chips.
- A polished rake face reduces friction and adhesion to cutting tool. Chips are allowed to flow freely across rake face and improve the quality of the workpiece finish.
- G-class precision tolerance of insert permits higher accuracy of surface finish and better repeatability when insert is indexed. Machining vibration is reduced also.

Angular cutting edge improves




Cutting edge segues from nose to main edge without interruption.

-LC and -LH chipbreaker characteristics and machining range

- -LC chipbreaker can be used in machining of pure AI, while -LH chipbreaker can not.
- -LC chipbreaker expand the chip breaking range of Al alloy machining.

Workpiece material: Pure aluminum

Workpiece mate		
Cutting parameters	V=1148SFPM Ap=0.00	08inch F=0.008inch/r
Chips	THE STATE OF THE S	
Surface quality		
	-LC chipbreaker	Competitor's tool
	■-I H chiphreaker is more suitable f	for machining aluminum alloy with

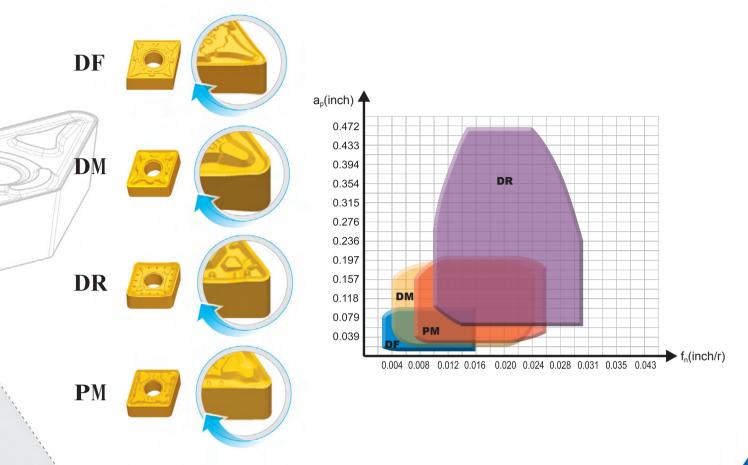
- ■-LH chipbreaker is more suitable for machining aluminum alloy with larger cutting depth and higher feed rate.
- ■-LC chipbreaker is more suitable for machining aluminum alloy with smaller cutting depth and lower feed rate.

S-Ni-based Superalloy Machining Difficulties Overcame

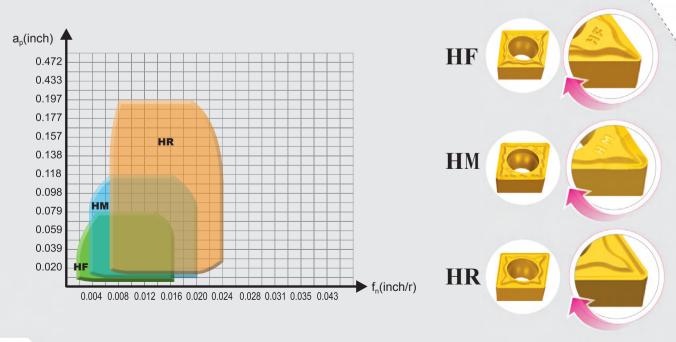
Features of NI-based superalloy machining

- High cutting resistance (containing a large amount of alloying elements, severe hardening, great plastic deformation;
- High cutting temperature;
- Severe wear of inserts.

Chipbreaker for machining of Ni-based superalloy should have tough and sharp insert nose, smooth rake face and proper inclination angle.


Chipbreaker for roughing with large depth of cut

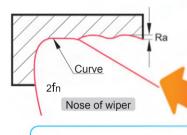
- Positive rake angle design, sharp cutting edge, low cutting resistance, effectively reducing groove wear;
- Cutting edge with variable rake angles increase cutting edge strength at large depths of cut. Edge strength increases as the depth of cut increases;
- Large slot width combined with unique edge rib design not only provides excellent chip breaking performance but also can effectively improve edge strength.



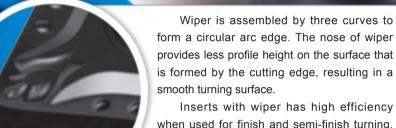
D series chip-breaker

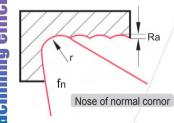
can be used for machining steel from finishing to roughing.

series chip-breaker



-WGF/WGM


chipbreakerseries Turning inserts with wiper


High efficiency

Roughness remains the same when feed rate is doubled.

when used for finish and semi-finish turning. The surface quality remains the same even at double feed rate.

h machining efficiency + high surface quality High quality Roughness value is reduced to half when feed rate remains the same. Ra/2 Curve Nose of wiper

When used for finishing, it can improve roughness of workpiece surface and achieve turning instead of grindina.

When used for semi-finishing, efficiency could be improved by doubling the feed rate, the roughness of workpiece surface remaining the same.

Guide to use

Select reasonable approach angle of the tools

Minor angle being close to 0 degree is the reason that inserts with wiper can reduce roughness of the surface, which is determined by the shape of insert and approach angle of the tool holder. Therefore, acceptable roughness of surface is the result of reasonable approach (minor) angle. The finishing function of wiper would be reduced or invalid if unreasonable approach (minor) angle is chosen. For example, the approach angle should be 95° for CNMG / WNMG inserts, while 93°is the best for DNMX.TNMX inserts.

Be careful with DNMX / TNMX inserts

DNMX / TNMX inserts with wiper don't have wide application. It cannot achieve a wiper result when minor angle is not 0 degree, like chamfer and profile surface, and will even cause over-cutting or no-cutting on workpiece, affecting the shape and size precision of workpiece. Please contact technical service regarding these problems.

er technique =

